3.306 \(\int (a+a \cos (c+d x))^3 \sec ^{\frac{5}{2}}(c+d x) \, dx\)

Optimal. Leaf size=131 \[ \frac{2 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{20 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(-4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^3*Sec[c + d*x
]^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.17981, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3238, 3791, 3771, 2639, 2641, 3768} \[ \frac{2 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{20 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3*Sec[c + d*x]^(5/2),x]

[Out]

(-4*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (20*a^3*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^3*Sec[c + d*x
]^(3/2)*Sin[c + d*x])/(3*d)

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^3 \sec ^{\frac{5}{2}}(c+d x) \, dx &=\int \frac{(a+a \sec (c+d x))^3}{\sqrt{\sec (c+d x)}} \, dx\\ &=\int \left (\frac{a^3}{\sqrt{\sec (c+d x)}}+3 a^3 \sqrt{\sec (c+d x)}+3 a^3 \sec ^{\frac{3}{2}}(c+d x)+a^3 \sec ^{\frac{5}{2}}(c+d x)\right ) \, dx\\ &=a^3 \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+a^3 \int \sec ^{\frac{5}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \sqrt{\sec (c+d x)} \, dx+\left (3 a^3\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{6 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} a^3 \int \sqrt{\sec (c+d x)} \, dx-\left (3 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{6 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{6 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} \left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{4 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{20 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{6 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 0.952797, size = 157, normalized size = 1.2 \[ -\frac{i a^3 \sec ^{\frac{3}{2}}(c+d x) \left (6 e^{-2 i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{3/2} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-e^{2 i (c+d x)}\right )+20 \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-e^{2 i (c+d x)}\right ) \cos (c+d x)+2 i \sin (c+d x)+9 i \sin (2 (c+d x))-6 \cos (2 (c+d x))-6\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3*Sec[c + d*x]^(5/2),x]

[Out]

((-I/3)*a^3*Sec[c + d*x]^(3/2)*(-6 - 6*Cos[2*(c + d*x)] + (6*(1 + E^((2*I)*(c + d*x)))^(3/2)*Hypergeometric2F1
[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/E^((2*I)*(c + d*x)) + 20*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c + d*x]*Hy
pergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))] + (2*I)*Sin[c + d*x] + (9*I)*Sin[2*(c + d*x)]))/d

________________________________________________________________________________________

Maple [B]  time = 3.743, size = 371, normalized size = 2.8 \begin{align*}{\frac{4\,{a}^{3}}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 10\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-18\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -5\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -3\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +10\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^3*sec(d*x+c)^(5/2),x)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(10*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-18*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-5*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*sin(1/2*d*x+1/2*c)^2*cos(
1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^3*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{3} \cos \left (d x + c\right )^{3} + 3 \, a^{3} \cos \left (d x + c\right )^{2} + 3 \, a^{3} \cos \left (d x + c\right ) + a^{3}\right )} \sec \left (d x + c\right )^{\frac{5}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((a^3*cos(d*x + c)^3 + 3*a^3*cos(d*x + c)^2 + 3*a^3*cos(d*x + c) + a^3)*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3*sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^3*sec(d*x + c)^(5/2), x)